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ABSTRACT. This paper describes two related issues pertaining to the role of multiple
objective programming (MOP) in complex forest planning problems. First, some impli-
cations of using inadequate MOP models in complex forest planning problems are de-
scribed. Second, an alternative MOP approach—modeling to generate alternatives—is
presented and illustrated using a multiple-use planning example. FOR. Sc1. 33(2):458—
468.
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MULTIPLE OBJECTIVE PROGRAMMING (MOP) encompasses a general class of
mathematical programming techniques for solving problems in which sev-
eral objectives are considered simultaneously. Multiple-use forest planning
exemplifies this situation because it involves several objectives or goals
such as increased revenues from timber resources, improved water quality,
protection of wildlife, and increased recreational opportunities.

The use.of mathematical programming techniques in multiple-use forest
planning has been limited mainly to linear programming (Leuschner et al.
1975, Kent 1980, Bare et al. 1984, Johnson 1986), and especially goal pro-
gramming (Field 1973, Bell 1976, Rustagi 1976, Schuler et al. 1977, Field et
al. 1980, Hotvedt et al. 1982, Arp and Lavigne 1982, Walker 1985). Other
MOP techniques have also been proposed (Steuer and Schuler 1978, Bertier
and deMontgolfier 1974, Bare and Mendoza 1986, Allen 1986, Hof et al.
1986, Harrison and Rosenthal 1986).

Most MOP techniques are designed to generate, identify, or select non-
dominated solutions.! Intuitively, the selection of a nondominated solution
is appealing because, from the standpoint of rational decision-making, no
other solution leads to better attainment of the stated objectives. This ratio-
nale is valid and applies in situations where the planning problem may be
considered relatively simple and well defined so that important issues, con-
cerns, and objectives can be adequately *‘modeled” or included in the for-
mulation and design of the model.

Some planning problems, however, are complex or wicked with broad
and ill-defined boundaries (Liebman 1976). Hence it is conceivable that not
all aspects of the problem can be adequately captured within a mathematical
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! A feasible solution is nondominated if there exists no other solution that will yield an im-
provement in one objective without causing a degradation in at least one other objective.
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programming framework (Allen and Gould 1986). Some issues or concerns
may be omitted because they are inherently qualitative in nature or because
inadequate scientific information precludes their incorporation. Moreover,
other objectives may be hidden, unrevealed, or possibly unknown to the
decision-maker or analyst (Brill 1979). Hence the ‘‘formulated”” MOP model
may be considered inadequate in capturing all of the quantitative and quali-
tative elements of the planning problem.

This paper examines the use of MOP in complex forest planning
problems. In addressing this topic, two separate yet related issues are dis-
cussed. First, a simplified two-objective problem is presented to show that
under complex decision environments where the formulated MOP model
may be inadequate, a preferred solution (in terms of the complete or *‘true’’
model) may be dominated if considered only in the context of the inade-
quate or formulated model. This leads to the second issue, which suggests
that to mitigate against this possibility, a general philosophy different from
most of the existing MOP techniques must be adopted. The general thesis of
this approach—modeling to generate alternatives (MGA)—is that the deci-
sion-maker should be presented with a variety of solutions that are maxi-
mally different in terms of the decision variables, yet satisfactory with re-
spect to the modeled objectives. By examining a wide array of diverse solu-
tions, it is presumed that the decision-maker will be in a better position to
make a final choice vis a vis the modeled objectives and in so doing satisfy
objectives omitted because they were too difficult to explicitly model or
were initially hidden or unknown to the decision maker.

A Simplified Two-Objective Problem

For illustrative purposes, consider the simple two-objective problem shown
in Figure 1. In this example, the complete or true MOP model includes both
objectives 1 and 2, while the inadequate or formulated model is assumed to
include only objective 2. Suppose only objective 2 is maximized producing
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-
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2 2
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FIGURE I. Feasible region in objective space.
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solution D with maximum value equal to G,2. Next, suppose the first objec-
tive is also considered and is simultaneously optimized with objective 2
(i.e., using the complete or true MOP model). Using any one of several
MOP techniques (see Bare and Mendoza 1986, Cohon 1978, Hwang and
Masud 1979, Zeleny 1982) to solve the complete model, a compromise solu-
tion along the lines ABCD will be generated. For instance, if goal program-
ming is used, and the target levels for objectives | and 2 are set at G,' and
G,', respectively, the solution H,, is generated. Other solutions along ABCD
may be generated by goal programming given different sets of goal levels
and weights (or priorities) assigned to each goal (Ignizio 1982). Clearly, the
compromise solution (H,) for the complete or true model would not be se-
lected if only nondominated solutions from the inadequate or formulated
model are considered.

The implication of the simple illustration is that if an inadequate or formu-
lated MOP model is used in the analysis, seemingly inferior solutions should
not be automatically excluded in the search for the preferred compromise
solution. This is because preferred solutions (from the standpoint of the
complete or true model) may be dominated in the context of the inade-
quately formulated MOP model.

It may appear from the illustration that added information should be pro-
vided before a rational decision (e.g., H,, in Figure 1) can be made. Further,
one may argue that if decision-makers use the formulated model, then in the
absence of information about the ‘‘omitted’” objective(s), how can the
choice of a dominated solution (H,) be justified. Obviously, such a choice
cannot be justified, even if it is the corréct decision. In fact, even the true
model may prove to be inadequate when compared to the real world system
it ‘purports to represent. This follows the well-known observation that all
models are abstractions of reality, and hence are subject to formulation
errors. To help mitigate against the consequences of adopting solutions from
inadequately formulated models, MGA is suggested as an alternative ap-
proach.

Modeling to Generate Alternatives

In the context of the above observations, a different view about the role of
MOP in complex forest planning problems is proposed. Instead of using
MOP models to ‘‘optimize” (i.e., identify and choose nondominated solu-
tions), we believe they should be viewed as tools that can be used to gen-
erate “‘satisfactory’ alternative solutions. Hence, the emphasis when de-
signing and using MOP models should not be on optimization per se, but on
the generation of *‘satisfactory™ alternatives (Liebman 1976). Following this
view, Brill (1979) advocates the MGA approach.

MGA is a general approach for generating alternative solutions that are (1)
satisfactory with respect to the objectives (i.e., objective space), and (2)
maximally different with respect to the decisions (i.e., decision space). The
first criterion can be met if the formulation specifies minimum requirements,
including target levels for each objective, as constraints. The second crite-
rion requires that the generated solutions be maximally different in terms of
the decision variables. Hence, MGA can be used as a tool in generating
solutions that are ‘‘satisfactory’’ with respect to the known or ‘‘modeled’’
objectives, and widely different with respect to the decision variables.

The primary motivation of this approach is that by generating a sufficient
number of distinctly different and satisfactory alternatives, a wider span of
the decision space can be searched, providing a wider range of choices for
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the decision-maker to consider. Implicitly, this approach assumes that by
providing a wider range of distinctly different solutions, the decision-maker
will be in a better position to select the preferred solution. Moreover, the
possible impact of the missing or unmodeled objectives may be implicitly
considered within the wider set of generated solutions. It is possible that
with the opportunity to examine a wide range of distinct solutions, some
insights may be gained, particularly on issues and concerns that may not
have been initially considered in the model, leading to a more rational deci-
sion. .

The use of models to generate alternative solutions in MOP is an ap-
proach that, in a strict sense, may not be unique to MGA. Other models also
generate alternative solutions mainly by manipulating the model parameters
through sensitivity analysis. For instance, Hotvedt et al. (1982), and Field et
al. (1980), describe how various alternatives can be generated through goal
programming by manipulating the goal levels and weights (or priorities) of
each objective. The approach of Hotvedt et al. (1982) in some ways parallels
MGA because it also generates alternative solutions using a heuristic weight
determination procedure. However, the generation of alternative solutions
in Hotvedt et al. (1982) is primarily through manipulation of the model pa-
rameters, particularly the weights. Hence, its emphasis is primarily in the
objective space, not in the decision space as is true in MGA.

In contrast, MGA is an approach that aims to generate maximally dif-
ferent solutions in terms of the decision variables. MGA does not generate
alternative solutions through a systematic manipulation of the model param-
eters. Instead, MGA concentrates on the variability of the alternative solu-
tions with respect to decision space. As stated earlier, while there may be
numerous satisfactory solutions with respect to the known or modeled ob-
Jectives, they may be significantly different from each other with respect to
the decisions they specify. And, some of these solutions may be better than
others with respect to the unknown, unmodeled, or hidden issues and con-
cerns.

One of the methods utilizing this approach is the Hop, Skip, and Jump
(HSJ) method (Brill et al. 1982). The general form of this method is dis-
cussed below:

Step 1. Obtain an initial solution using any method (e.g., maximize one of the objec-
tives or use goal programming).

* Step 2. Obtain an alternative solution by solving

: J
Min = ¥ X; ey

j=1
st. Z(X) =T, k=12,...,K )
xeX (3)

where

J = set of indices of the decision variables that are nonzero (i.e., basic)
in the original solution,

T, = target specified for objective Z,(X)
x € X = set of feasible solutions
X; = basic variable j

The formulation above is designed to produce alternative solutions dif-
ferent from those previously generated. Note that the nature of the objective
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function in (1) suggests that the algorithm will generate a new set of basic
variables (i.e., a new set of decision variables and hence a distinct new so-
lution) by driving some of the previously basic variables to zero. In the
extreme case, the formulation drives all previous nonzero decision variables
to zero, resulting in an alternative set of decision variables completely dif-
ferent from the previous solutions. In a less extreme case, only some of the
previously nonzero decision variables are driven to zero, resulting in a “‘less
distinct’” alternative set of nonzero decision variables. However, the target
levels T, ensure that the new solution generated will be satisfactory with
respect to the modeled objectives.

Step 3. Generate a third solution different from the first two by solving a problem

analogous to Step 2. Generate a series of additional alternative solutions following
the same process.

A Multiple-Use Planning Example

The forest planning problem considered in this paper is adapted from Bell
(1976) and is used solely to demonstrate the method. The problem involves
the allocation of forest lands within huomogenous management units to
various land uses. Five objectives are considered: (1) maximization of
timber yield, (2) maximization of forage production, (3) increased developed
recreation, (4) improved dispersed recreation, and (5) water production.
There are three management units with a total arca of 45,000 ac. The annual
output matrix for the three management units is described in Table 1. Table 2
is a pay-off table containing the maximum values of the five objectives when
they are optimized independently, including the respective values of the
other objectives. Clearly, the *‘ideal’” solution wherein all five objectives are
simultaneously optimized is not feasible.

For demonstrative purposes, assume that one of the objectives, particu-
larly dispersed recreation, is omitted in the MOP formulation. Hence, the
inadequately ‘‘formulated”” MOP model includes only the remaining four
objectives. The results of this partial MOP analysis will be examined later
relative to the missing or omitted dispersed recreation objective.

Following the steps of the algorithm as described earlier, the solution that
maximizes the timber objective is arbitrarily chosen as the initial alternative
in Step 1. Per Table 3, or solution I in Table 2, this alternative yields 6,650
mbf of timber; 8,125,000 1b of forage; 27,000 ac-ft of water, and no visitor-
days of developed recreation.

For Step 2 of the algorithm, the following target levels are used: (1) 6,000
mbf of timber, (2) 8,000,000Ib of forage, (3) 10 million visitor-days of devel-
oped recreation, and (4) 20,000 ac-ft of water. These values are less than the
individual maximum values of each objective, but are assumed to be satis-
factory. The basic variables (i.e., nonzero decision variables) from the initial
solution in Step 1 are identified and included in (1). The solution gencrated
in Step 2 is denoted by HSJ1 in Table 3. Again, the basic variables from the
HSJ1 solution are identified and included in (1) to generate the next solu-
tion, denoted by HSJ2. The process is repeated as other alternatives are
generated. A summary of the HSJ solutions generated for the sample
problem are presented in Tables 3 and 4.

In general, the stopping criteria for the HSJ procedure are (Brill 1982): (1)
when no new basic variable can enter the solution [i.e., can be included in
(1)] because all decision variables are currently or have previously been
included in the HSJ objective function described in (1), and (2) when the
analyst or decision-maker feels that a sufficient number of alternatives have
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TABLE 2. Maximum and attainable values of each objective when maximized sep-
arately.

Objectives
Forage Dev. rec.
Timber ('000) ('000) Water Dis. rec.
Solutions (mbf) (Ib) (vd) (ac-ft) (vd)
1 6,650 8,125 0 27,000 63,500
2 5,600 9,000 0 . 27,000 21,700
3 5,743 7,198 16,09 27,800 17,667
4 6,150 7,315 16,000 33,800 117,700
5 5,293 7,198 9,967 27,000 147,051

been generated, or when the difference between each new alternative and a
previous one becomes insignificant. The first stopping criterion suggests
that all decision variables have been basic at some previous iteration, and
hence they have been included in the objective function at one time or an-
other. Some variables may consistently be nonzero and will consistently be
in the basis. Others may, at some iteration, be nonzero and then become
zero at a succeeding iteration. If the first criterion is imposed, it implies that
all decision variables have exhaustively been considered and have at some
iteration been part of a generated alternative solution.

The second criterion is more general and more flexible. Its use implies
that two alternative solutions that are successively generated are not very
different in terms of the decision variables that are nonzero. Or, the deci-
sion-maker may decide that enough solutions have been examined.

The HSJ algorithm is very flexible and lacks the rigid structure and sys-
tematic procedural search of other algorithms. For instance, the choice of
the initial solution is completely arbitrary, and hence the algorithm can be
restarted at any time using a different initial solution. Obviously, if the algo-
rithm is intended to be used as an optimization tool, it would be inefficient.
However, if the algorithm is used to generate maximally different but satis-
factory alternatives, it is flexible enough to generate a sufficiently wide
range of distinct solutions.

Differences Among Generated Solutions

As pointed out earlier, the HSJ approach is designed to generate alternative
solutions that are (1) satisfactory relative to the targets specified in (2), and
(2) distinctly different from each other in decision space. This section de-
scribes the differences among the four solutions generated by HSJ.

Table 3 shows the solutions in objective space (i.e., values of the objec-

TABLE 3. Summary of HSJ solutions in terms of the values of the objectives.

Missing
objective
Timber Forage Dev. rec. Water (Disp. rec.)
(mbf) ('000 b}y ('000 vd) (ac-ft) (vd)

Initial 6,656 8,125 0 27,000 63,500
HSJ1 6,080 8,000 10,000 27,500 99,200
HSJ2 6,100 8,000 10,000 27,500 25,950
HSJ3 6,000 8,000 10,000 27,500 79,426
HSJ4 6,000 8,000 11,623 27,579 73,157
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tives) while Table 4 contains the solutions in decision space (i.e., acres
within a management unit managed under a given treatment alternative).
Looking at Table 4, the differences among the HSJ solutions can be ex-
pressed in terms of (1) the number of new land uses, and (2) changes in the
acreages of land uses. The differences between alternatives in objective
space as shown in Table 3 can be expressed in terms of (1) changes in the
values of the objectives and (2) changes in the values of the missing objec-
tive (i.e., dispersed recreation).

DIFFERENCES IN THE NUMBER OF LAND USES

The column in Table 4 represented by the number of new basic variables
corresponds to the number of new land uses that were not previously gener-
ated. For example, consider the initial and HSJ1 solutions. The initial solu-
tion has five land uses, namely (1) 2,000 ac of wilderness in management
unit A, (2) 8,000 ac of no management (idle) lands in A, (3) 15,000 ac of
timberland in B, (4) 10,000 ac under timber management in C, and (5) 10,000
ac of forage in C. Looking at the solution in HSJ1, there are four new land
uses that were not generated in the initial solution, namely 3,000 ac of
forage in A, (2) 5,000 ac of developed recreation in A, (3) 15,000 ac of forage
in B, and (4) 16,000 ac of dispersed recreation in C. Hence, the initial solu-
tion and the HSJ1 solution are different in two ways: (1) there are four new
land uses in HSJ1 that were absent in the initial solution, and (2) three land
uses in the initial solution are dropped in the HSJ1 solution. Hence, the two
solutions offer two different sets of land uses with their corresponding
outputs as shown in Table 3.

DIFFERENCES IN ACREAGES OF LAND USES

Table 4 shows the differences among HSJ solutions in terms of the changes
in the values (acreages) of each land use. For instance, the allocation for
forage in management unit C varies from 4,000 ac in HSJ1 to 20,000 in
HSJ2. Or, timber management in B varies from 15,000 ac for the initial solu-
tion to 4,315 ac in HSJ3 and no allocation in HSJ1, HSJ2, and HSJ4.

CHANGES IN THE VALUES OF THE OBJECTIVES

The difference in the HSJ solutions can also be observed in objective space
as shown in Table 3. For instance, water production ranges from 27,000 ac-ft
for the initial solution to 27,579 ac-ft in HSJ4. Also, the values of the devel-
oped-recreation objective range from 10 million to 11.623 million visitor-
days, while the timber objective ranges from 6,000 to 6,650 mbf. With the
exception of the missing objective (dispersed recreation) the different solu-
tions do not appear to yield significantly different outputs. This result again
illustrates the possibility that some alternatives may be nearly as good as
each other with respect to the modeled objectives, while others may be
better with respect to the unmodeled objectives. This observation is further
described in the next section.

DIFFERENCES IN TERMS OF THE MISSING OBJECTIVE

One of the issues raised and discussed in this paper is the implication of
choosing solutions generated from an inadequately formulated MOP
model. To illustrate, we have omitted the dispersed recreation objective in
the HSJ analysis. From Table 3, it is clear that the values of the dispersed
recreation objective vary considerably among the HSJ solutions. The values
range from 25,950 visitor-days in solution HSJ2, to a maximum of 99,200
visitor-days in the HSJ1 solution. This implies that although the values of
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the modeled objectives do not vary significantly among the solutions of the
inadequately formulated model, these solutions may in fact be very distinct
relative to the complete or true model.

Another implication that can be observed from Table 3 is described in
solutions HSJ! and HSJ2. Note that considering only the first four objec-
tives, HSJ1 is dominated by HSJ2 because HSJ2 yields more timber volume
while producing the same amount of forage, developed recreation, and
water. However, the results based on the true five objective MOP model
show that when the missing objective is included, HSJ1 is no longer domi-
nated. Again, this illustrates our contention that because of possible formu-
lation omissions, solutions need not be categorized as dominated and non-
dominated. Consequently, seemingly dominated solutions from an *‘inade-
quately’’ formulated model (like the four-objective multiple-use planning
example), should not be categorically disregarded. And, to guard against
this occurring, the MGA approach is suggested as a possible way to further
explore alternative solutions that produce satisfactory results.

Summary and Conclusions

MOP models formulated for analyzing complex forest planning problems
may be inadequate because relevant concerns, issues, or objectives may be
inadequately included or inadvertently omitted from the model. When this
inadequately formulated model is used in the analysis, dominated solutions
should not be excluded in the search for the preferred alternative because
potentially they may be better alternatives.

This paper has described an alternative approach that may be better
suited for this type of problem. The primary emphasis of the approach is the
generation of maximally distinct and satisfactory solutions, rather than the
identification of an optimal or nondominated solution. One method utilizing
this general approach, called Hop, Skip, and Jump is described using a mul-
tiple-use planning example.

The problem of missing objectives or an inadequately formulated model in
complex planning problems is a realistic one. The approach described in this
paper recognizes this problem and considers it in an implicit manner. While
the proposed approach may not be superior to other MOP techniques, it
offers an alternative approach especially in complex forest planning situa-
.. tions. One apparent disadvantage of the approach is the lack of a systematic
- procedure for aiding the decision-maker in selecting the best solution from
among the set of generated solutions. It is, however, plausible that this ap-
proach may prove to be better suited to decision-making under complex or
wicked environments such as forest planning. Further, this is also a disad-
vantage of other MOP techniques that modify problem parameters through
sensitivity analysis.
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